Primary culture of oligodendrocyte precursor cells

When transplanted, GFP+ oligodendrocyte precursor cells produce MBP-expressing (red) oligodendroctes in recipient mouse forebrain



Oligodendrocytes are one of the main types of glia in the central nervous system. They are responsible for ensheathing axons with a specialized membrane called myelin. Myelin creates distinctive compartments along the axon, enabling fast communication between nerve cells. In addition to their structural and metabolic supportive role required for neuron integrity and function, oligodendrocytes are also involved in neuronal differentiation and synaptic plasticity.

Congenital and acquired diseases characterized by loss of myelin affect tens of thousands of children in the United States. These include rare disorders of primary myelin formation, such as Pelizaeus-Merzbacher disease, hereditary and metabolic leukodystrophies such as Krabbe’s disease, immunological-based diseases such as multiple sclerosis, lysosomal storage disorders, and the more common periventricular leukomalacia (PVL) or white matter injury associated with preterm birth. Oligodendrocytes and their precursors play a crucial role in the pathophysiology of neurological disorders characterized by myelin loss.

The overarching goal of my research is to better understand the cellular biology and pathogenesis of leukodystrophies, a major cause of neurodegeneration in infancy and early childhood, with an aim toward developing rational therapeutics and improve morbidity related to these disorders.